AD=A096 367 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER =--ETC F/6 9/5 BN
AREA-EFFICIENT GRAPH LAYOUTS (FOR VLSI).(U) N

AUG 80 C E LEISERSON NOODIG-"G-C-OS'IB

CMU~CS-80-138

UNCLASSIFIED




= P nww.sf mww .

?) — @im- -w-mj ,

l Area-Efficient Graph Layouts \%\
—1 {for VLSI). [
@?ta rles EJLelse rs

Department of Computer Science
Carncgie-Mellon University

Pittsburgh, Pennsylvania 15213 @éﬂ
f£7 ECTE
- MR 16 196}

E

o Ko T ]

DEPARTMENT
of

COMPUTER SCIENCE




i
‘ ) | OMU-Cs-80-138

Area-Efficient Graph Layouts
(for VLSI), '

+_ CharlesE.Leiserson

Department of Computer Science ,
Carnegic-Melon University -
Pittsburgh, Pennsylvania 15213

August 1979
[ast Revised 13 August 1980

Abstract i

Minimizing the arca of a circuit is an important problem in the domain of Very Large Scale Integration. We
usc a theoretical VI.SI model to reduce this problem to one of laying out a graph, where the transistors and
wires of the circuit arc identifiecd with the vertices and cdges of the graph. We give an algorithm that
produces VI.SI layouts for classes of graphs that have good separator theorems. We show in particular that any
planar graph of n vertices has an O(nlg” ) arca layout and that any tree of  vertices can be kaid out in linear
arca. ‘The algorithm maintains a %Barsc representation for layouts that is based on the well-known UNION-
FIND data structure, and as a result, the running time devoted to management of this representation is nearly
linear.
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1. Introduction

The remarkable advance of very large sale integrated (VIESI) circuitry has sparked rescarch into the
design of algorithms suitable for direct hardware implementation. ‘To the computer theorist, VIS provides
an attractive model of paraltel computation for three reasons. Farst of all, the number of components that can
fit on a single chip is large. and bevond that has been doubling every one to two years, 11is currently possible
to place 10° components on a single ¢hip, and it is projected that this number will very tikely grow to 10" or
even 10%.  These large numbcers make asymptotic analysis and other theoretical ools applicable o this
engineering discipline. Sccondly, VISI hardware expense can be yelated directly to the very mathematical
and geometric cost function uf areq. Unlike older technologies, the components and interconnections
between components are made out of the same “stuff™ in VESL and henee arca is a uniform cost measure for
both. Finally. VLSI provides 1 model of parallel computation that includes communication costs as well as
operation counts. The cost ot communication is represented explicitly as the area of a fixed-width wire
between two processors, In fact, interconnections can consume most of the arca of an integrated circuit chip.
A major goal, therefore, is to minimize the arca required by particular interconnection schemes. This paper
examines the problem in an abstract setting: “Given a graph, produce an area-efficient layout.”

I

Figure 1: An O{nlg 1) layout of a complete binary tree.

Vo illustrate the subtletics inherent in this problem. consider laying out a complete binary tree of n = 2%-1
vertices.  Figure T shows an obvious solution that requires O(nlg ") arca—O(/z) across the bottom times
0(lg #) height. Observe that as we ascend the tree from the leaves to the root, the number of wires is halved
from one level to the next. but the length of the wires doubles. ‘This means that the amount of wire devoted to
cach level of the tree is the same. ‘The recurrence that describes the arca required by this layout is A(n) = 1
forn=1, and

Ay = 24(0/2]) + n/2

for n = 2%~1 where k > 1.

There is 4 more efficient solution o this embedding problem. ‘The so-called H-rree layout [17] shown in
Figure 2 requires only O(n) arca in spite of the fact that relatively long wires are used towards the root of the
tree. In this knout. the number of wires is habved from level to level as we ascend o the root, but the tength
of the wires doubles only every two levels, Whereas, the standard O 1g #) Tayout uses just one dimension for
routing most of the wires. the H-tree makes better use of both spacial dimensions. ‘The recurrence describing
the arca required by the H-tree is more complex than the previous one because of its nonlincar form:
Ay =1 forn=1 and

Ay = A /)y + IV n/d)) + 1

forn =2 4*-Ywhere k> 1.
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? Figure 2: ‘The H-rree lavout of 4 complete binary tree.
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This recurrence can be sohved by tking the square root of b ath sides of the equation. wnd rewnung &t m
terms of V. 1(n), the length of the 2dge of the lavout. The rew recurrence s a simple drade-and-conguer
recurrence which has solution O(Vn) for the edge of the lay out.

1tie remainder of this paper is organized as follows, Soctions 2 through 3 contain b olkznund muateridl
B2 VIST Lvout model and Seetion 3 i

that will be used in fater sections. Section 2 contains a formulation of 3
gives e definition of a separator theorem. Some rosults rezarding e arcas ond usped? rars of L outs are
proved in Section 4. In Scction 3. an important nonlingar recurrence equation is sebved.

Seztion 6 brings the divjoint ideas of the previous sections together by wsing separeior tioerems o help
construct VEST Lizouts. Many corollaries follow from this main rosult and they wre evplered in Seczon ™ In l
Section 8. an implementation of the Lo out alzorithm s presented which s based on the UhoN-FiND
alzoritnm analy zed by Tarjun [22]. Tt s shewn that the time required for maintaining i reprosentstien < fa
lazout is nearly linear, Section 9 uses manty of the technigues from carlicr sections o Nt osnzate o L out
madcel in which the vertices of a graph are constrained to lie on a line. Finally. Scction 10 tres o place the

work cf this paper in proper perspective.

i e -

2. The VLS| Model

Before presenting the VIS model used in this paper. it is worthw hile to examing some of the attnbutes of
VIST technologics, VIST components—wires and transistors—are constrained o lie m Lavers on g water of
silicon. Because the number of Lavers is small (usualls under sio the size 07 o VESE cinin 2an e measurad hy
the total area of sthcon used—the lavers contributing to the shility of wires o cress, Foeny VST thnication ‘
process has a natural metric. he s feature size Aowiic s the widih of the narroaost wore that ¢an be ;
manufactured.! The smallest transistor that can be menutectired s o ~qure =+ i adie A und e N Sinee

-

Crsumiad By owares,

wire of lenzth /oconsumes A Foarea, itis not unusuel for much of the sree o s chip to be o
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Intuitively, the VISI model should make one-to-one correspondences between edges in the graph and
wires in the layout, and between vertices in the graph and transistors in the lavout. ‘the mapping between
edges and wires scems straightforward cnough, but there are many issues o be resobved in establishing a
correspondence between vertices and transistors. An important one is that a vertex in a graph may have large
degree, and yet on an integrated circuit, an arbitrarily large number of wires cannot come together at a single
point. There just isn’t enough room.  Another problem arises from the fact that a transistor occupices area.
What assumptions should be made about the size and shape of that arca?

In this paper. we resolve these difficulties by restricting the discussion to classes of graphs with vertex degrees
that are bounded by @ constant, and by firther asswning that vertices require onlv a constant urea of silicon,
Although these constraints may seem severe at first, the results of the paper are casily generalized to more
complex models. For example. there is a simple transformation from an arbitrary graph to a trivalent graph
such that each vertex ot the original graph is a block of the trivalent graph. Another way that the modcl can
be catended s o allow several transistors (o be connected by a single wire. ‘This is casily accomodated by
considering hipartite graphs—vertices in one set represent transistors and those in the other represent wires.

Having resolved the graph-theoretic issues, we now turn to the modeling of the layouts t.emselves. The
VES] model proposed here is similar to that of Thompson [23] in which wires have unit width and only a
constant number {Iwo) may cross at a point. Vertices are placed on a rectangular grid so that cach lies within a
grid square.  Fdges run horizontally and vertically, one per grid square. eacept that an edge running
horizontally may cross one running \crucally.2

Layouts that are designed with this modcel have the property that they are sliceable. 'That is. a horizontal or
vertical line can be used to hisect the favout, the picces can be moved apart, and the severed wires can be
reconnected to realize the original topology. Slicing can be used (o generate new layouts from old ones. For
example, Iigure 3 shows how slicing cnables a new cdge to be routed between two existing vertices in a
lavout. "Fwo horzontal and two vertical cuts are made through the layout to expose the the vertices that are to
be connected.  (Actually, two slices in one direction and onc in the other always suffice.) The picces are
separated by a grid unit, the severed edges are reconnected across the gaps. and a new cdge which connects
the vertices is run through the gaps. If the fength in grid units of the onginal lavout was /. and the width W,
the new lavout has length at most 1.+2 and width at most B+2. 1t should be noticed that the slices through
the layout must be straight—-a staircase cut ‘may require the picees to be separated by more than a single grid
unit tor 4 new edge to be routed.

3. Separator Theorems

Recently, Lipton and Tarjan {{4] showed that any planar graph of # vertices can be divided into two
subgraphs of approximately the same size by removing only O(Vir) vertices. Since the subaraphs are
themisehh es planar. this separator theoren provides a basis tor eaploiting the divide-and-conquer paradigm (1],
We shall 1ind it convenient to alter the definition of separator theorem that ipton and Tarjan give. Whereas
they bisect o graph by removing vertices. we shall remove edges. Since we e prnapally concerned with
classes of graphs with hounded degree. the defimtion we give is equivalent exeept for the values of the

constants i the defimuon,

“
“Sothat wires do et G often o ene Biver o another, mass sarc-iosine maciars e Vool sehane (1M i whieh all
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Figure 3; Two horizontal and two vertical slices are more than sufficient to route an edge.

Definition: 1.ct .S be a class of graphs closed undcr the subgraph relation, that is, if G is an
clement of S, and (7 is a subgraph of G, then G’ is also an element of S. An f(n)-separator
theorem for S'is a theorem of the following form.

There exist constants a, and ¢ where 0 < ag < 1/2 and ¢ > 0 such that
if (ris an n-vertex graph in S, then by removing at most ¢S (n)edges, Gean
be partitioned into disjoint subgraphs G, and G, having an and (1-a)n

vertices respectively, where agsag l-as.

3

The sct of removed edges is called the cut set of the biscction, and f(n) is called the width of

the biscction.

This definition is adequate for Lipton and Tarjan’s ﬁ-scl)arat()r theorem because the class of planar
graphs is closed under the subgraph relation. But there are many classes of graphs for which the same divide-

and-conquer approach works, yet the class is not closed under the subgraph relation.

The noton of

scparability can be cxtended by taking the closure of the original class of graphs with the subgraphs
postulated by the separator theorem. Using this interpretation of separability, it is casy to show {13] that the
class of trees has a 1-separator theorem. (‘'he class of trees is not closed under the subgraph relation, although
the class of forests of trees is.) We shall give additional separator theorems in Section 7.

“Throughout this paper it is assumed without toss of generality that a is chosen to permit an to evaluate 1o an integral value. This
asumpuion is preferied over the use of floor or cetling functions because 1t will be uselul todentify the particular values of a and
becauce it makes the mathemancal formutae more readable.




4. Areas and Aspect Ratios

The size and shape of a rectangle is uniquely determined by its lengrh 1. and its widith W, where we shall
assume that L > B > 0. But there is another coordinate space for specifying sizes and shapes of rectangles—
area and aspect ruatio. Everyone is familiar with area and knows that the arca can be defined as the product
LW, 'Ihe aspect ratio o 1s defined as the quantity 1/ 7., which by this definition. is less than or cqual to one.
Given the area and aspect ratio of a rectangle, its length and width are given by /. = VA/0 and W= Vo 4.

Suppose a graph has a VISI layout of area 4 and aspect ratio o. 1t is natural to ask whether there are
other layouts of the graph that have different dimensions but similar area. "The following theorem shows that
a long and skinny layout can be made into a squarc layout (aspect ratio of onc) by paying only a constant
factor increase in arca.

Theorem 1: If the bounding rectangle of a given favout has arca A, then there exists
topologically equivalent layout that can be enclosed in a square whose arca is at most 34,

Proof. 1et the length and width of the oniginal lavout be integers /. and W, If . < 3W, then a square with
side /. satisfies the constraings of the theorem. Now suppose /. > 3W. ‘The layout can be sliced in several
places and “folded™ like a roadmap with the severed wires connected around the corners. Figure 4 shows a
squarc with side s = | V34 | in which a rectangle has been folded. 'This rectangle is the longest rectangle of
width 11 that can be folded into the square, and so if we can prove that the length of this rectangle is at least
L, then we will have demonstrated that the original layout can also be folded to fit in the square.

Figure 4: A layout can be “tolded™ o fitinto a square.

et & =|s/W] be the numher of picces into which this longest rectanzle of width 37 has been folded.
The rectangle is made up of two long picces and A-2 <hort picces. Since /> 3 qimplies s > 307 the short
pieces must be at feast 573 grid umits Jong, and the toug preces mnst hase Tor ot at feast 23720 Thas the total

length ot the folded rectangle is at leastCA=2)s/3 # 2025 /3) - s(h+2)/ 3.

Because & is the Targest number of picees of width #7that - anche folded into the square. it follows that




k+1 picces of width W will not fit. Thercfore, the length s of the side of the square must be strictly less than
W (k+1), which means

s < Wk+l) -1,

By definition of s, the quantity (s+1)> must be strictly larger than 3 4, and hence

i
LW < (s+1)P -1 = s(s+2).
Substituting for s, l
MW < s(W(k+1)-1+2) !
= s(W(k+1)+ 1) (
< sW(k+2) 'c
‘ since B> 1. Cancelling H” from both sides and dividing by three yields /. < s(k+2)/3. But the righthand
side of this inequality is the value that we carlier demonstrated was less than or equal 1o the wotal length of the it
folded rectangle. “Thus 7 is less than this total length, which was to be proved.* O i

Can one “unfold™ a square layout to make it arbitrarily long and skinny without paying a large increase in
arca? Not always. and a unit square layout provides the counterexample. I we insist that the side of the
square be large, the answer is still no. For example, we showed in the introduction that an a-leaf complete
binary tree can be laid out in O(#) arca. But in Section 9. we shall prove that the minimum dimension of that
arca must have order at least Ig 2. Thus to achieve good upper bounds for layouts. it scems prudent to avoid 4

W e

those that have small aspect ratios.

The technique presented in Section 6 to construct arca-cfficient Tavouts recursively biseets rectangular
arcas. 1o avoid creating arbitrarily long and skinny rectangles during the recursion, it is important that the
aspect ratios of the generated rectangles be bounded below by a positive constant. The next lemma sets forth
conditions wherehy a rectangle whose aspect ratio is so bounded can be bisected into two rectangles whose
aspect ratios are simitarly bounded. i

Lemma 2: et R be a rectangle with area 4 and aspect ratio o,. where o, > o for some ¢
in the range 0 < o < 172, Suppose R is bisected parallel o its short side into two rectangles
R, and R, whose arcas A, and A, arc .1 and (1-£)4 for some £ in the range 0 < § < 1-0.
Then the aspect ratios of the subrectangles are bounded below by g, that s, ak,1 > o and

6, >0.
Ky

Proof, Without loss of generality. we consider R, only. ‘The proof may be broken into two cases.  If
£ > 0, then the aspect ratio of Ry is 0,78 This is bounded below by o since o < g, implics that
o <06/§ <a,/¢ On the other hand if § < 0. then the aspect ratio of R is §70,. But o bounds ¢ from
below. and henee 6 < 0/0, < §/0,. O

Suppose a sguare is divided into two rectangles so that the ratio of the arca of the smaltler to the larger is
atworst o/(1-g). and then the rectangles are themselves subdinvided by at worst the same ratio of arcas, and
so forth. Lemma 2 says that if the biscction is always parallel to the short side. then no rectangle is ever
generated whose aspect ratio is worse than o, The divide-and-conquer construction in Section 6 will use this

R T e e s

result.

4 .
1t should be mentioned that a wotst cise s achieved when a onesby-five rectangle is folded mto a three-ty-thice square




5. A Nonlinear Recurrence

Suppose S is a class of graphs for which an f(#n)-separator theorem has been proved.  In Scction 6 we
shall show how to lay out any graph in S, In this section, we investigate a nonlinear recurrence equation that
will be used to relate f£(n) to the arca of the layout.

Let A(1) be a positive constant, and let A (n) be defined on any integer n> 2 by

A(n) = max  (A{an)+ AW-a)n) + 2L ()V A Can)+ A{(T=a)n) +f2(n)) (1
asgagl-as
= max (VA (an)+ A =a)n) + f(n))?,
assugl-as

for some 0 < ag < 1/2.

Given a particular f(n), there are standard methods for solving such a recurrence. We shall usc a
technique. however, that will enable us to solve this recurrence for broad classes of f'(n). We shall define a
simpler function B(n) ¥hich will be shown to have the property

An) < nB2(n) 2)

for all a. By providing an upper bound for B(x), it will be easy to use (2) to bound A(n).

We define B(n) as VA(l) for n=1, and as
B(n) =  max (Blan)+ f(n)/Vn)

"‘.3‘5"5"“5
for n> 1. Property (2) holds for n =1 by the definition of B(1). Making the inductive assumption that it

holds for values less than n,

An) < max  (VanB (an)+(1-a)nB* (1-a)n) + f(n))?

assagl‘u‘g
< max  (VanB? (any+(1-a)nB?(an) + f(n))? 3)
assagl-as
< max (VnBz(an) +f(n))2
asgaglms
< max  n(Blan) + f(n)/Vn)
assagl-as
= nB¥(n).

Line (3) in this proof follows from the consideration of two cases. If B(an) > B((1-a)n) for the value of a
that realizes the maximum. then (3) be derived from the previous line by straightforward substitution of
Bty for B((1=adn). On the other hand. if Blany < B{(1~aln). then substitution of By -a)n) for Blan)
followed by a change of variable of 1- for a vickds the same resalt

It remains o evaluate B(n) which, cxcept for the madmization, s a simple divide-and-conquer
recurrence that can be solved by iteration. Thus

£ ta, ) 1 N7
By = 2=+ -f——,t’:~ + '——,—(_'4;17‘_:—,}— +o+ Blaga, . oan) 4)
Vo Va,n \/u](x‘,n s

where r g =log, o cach value g cag oo s the val sofa ot reddizes the vuvimam it cach stage of the
s s
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itcration: and the product «a, . .. a, cquals 1/7a. Upper bounds for Fquation (4) can be determined on the
basis of suitable assumptions about f(#). The upper bounds in Table 1 were determined by evaluating this
summation according to the indicated assumnptions about f(n). ‘The lower bounds for A(n) were derived by
defining a function C(n) which is similar to B(xn) but which provides the bound A(n) > nC(n).

Table 1; Solutions of Recurrence (1).

f(n) B(n) A(n)
0(n9). g< 172 o(1) o(n)
O(Vnlgkn). k>0 0O(ig“*1n) O(n1g2*+*2n)
QnY). ¢>1/2% o(f(n)/Vn) o(/(n)

FSee text for an explanation of this entry.

To demonstrate the upper bound results for the third entry. it is insufficient to assume only that
Fny = Q(u¥) for some g > 172 as the table implies. In addition the function £/ V1 must be well-behaved
in the following sense.

Definition: A function g{a) is said w sausfy Reguldariy Condition €1 there exist positive
constants ¢; and B3, such that ¢; < 1, B, < 172, and g{(f8n) < ¢, g(n) for all sufficiently lurge n
and all B in the range B, < B < 1-B,.

Making the assumption that f(n)/Vn satisfies Condition C1 with B, = ag. we can now prove the third
line of the wible. For large #and a, << 1"’5' we have

Slaym < ¢ f(n)
Van = Vi

1

and in general for cach term in Equation (4)

faga, ... an) < ok fin)
Vao,. . an ~ V'V

Substituting these terms in Equation (4) gives the bound

S 2
Bn) < 2 (l+c, +¢2+ ... )+ constam,
7 1t a )

which is O(f(n)/Vn) since ¢; <1. ‘The constant arises from the finite number of values that are not
sufficiently large according to the regularity condition.

We hinve just shown that the third entry in the table holds if £(n)/Vn satisfies Condition C1. What can
be deduced from a weaker assumption?  Suppose, for example, that we only assume that f(n)/ Vo is
monotonically nondecreasing, that is

PRI RE G i SO - i i




flan) f(n)

—_— € =,
Van Vi
for all n > 2 and all « in the range a, < a < I-a. Since there are only O(lg n) terms in the summation (4), it
follows that B(n) = O((fO)egn)/ Vi) and A(n) = O(f2(n)ig?n). A factor of Ig2n in arca is paid because
monotonicity is a weaker constraint than Regularity Condition C1 on the well-behavedness of f(n)/ V.

‘The layout construction of the following section will need to assume that A(n) is itself well-behaved
according to a different regularity condition.

Definition: A function g(n) is said to satisfy Regularity Condition C2 if there exist positive
constants ¢, and B, such that 8, < 1/2 and g(B2) 2 ¢,g(n) for all n > 2 and for all B in the
range B, < 8 < 1-B,.
The qualification “for all # > 2" in this definition seenis to be stronger than the phrase “for all sufficiently
large 0™ which was used in the definiton of Regularity Condition C1. If ali the values of g(n) are positive,
however, the two qualifications arc cquivalent-—although the values for the constants may be different.

Condition C2 is always satistfied by the solutions of A1) shown in the first two lines of ‘Table 1, but not
necessarily by that in the third line. To guarantee that 1(n) satisfies Condition C2 in this instance, it is
sufticient to assume that f(n) itself satisfies Condition C2 in addition o the previous assumption that
F(my/ N satisties Cl.

‘The reader should be aware that most of the functions arising from a separator theorem will indeed satisfy
these regularity conditions. As an cxample, the conditions are satistied by all functions of the form cn"lg"n
for constants ¢. g. and & such that ¢ and ¢ are postive. Similar regularity conditions are assumed clsewlhere in
the literature (e.g. [1]. [3]. and [4]) in order w determine the asymptotic behavior of general complexity
functions.

6. Area-Efficient Layout Construction

Area-cfficient layouts can be obtained through the use of the divide-and-conquer paradigm. This scction
presents a construction which takes a graph and divides it into two subgraphs which are recursively
embedded. The two sublayouts are then sliced to expose the vertices with edges in the cut set and then those
cdges are routed as described in Section 2.

Theorem 3: 1et .S be a class of graphs for which an f'(n)-separator theorem has been
proved. and let ag and ¢ be the constants postulated by the separator theorem.  If A(n),
which is defined by A(n) = 1/¢.” for n= 1, and

A(n) = max  (VA{an)+ A(1-a)n) +f(n))z, ()
a\x_fagl-us
for n> 1, atisfies Regularity Condition C2 with ¢, = o and /?? = Q. then any n-vertex

graph ¢/ in S can be embedded inany recranzle whose areais at least
Acn) = (4(:\‘/05.) An), (6)

. s
and whose aspect ratio s at worst 6.

3 . .
Tihus the entries for A e Fable Do be used o evaluae 4\('» since the e oo meions 0o b gmiost i eon <t faetor,
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Proof Let G be an n-vertex graph in S. The following recursive construction shows how to emhed Gin a
rectangle R whose aspect ratio o, is at most o, and whose arca is A (n). Without loss of generality, view
rectangle R so that the longer side which has length L(R) = VA (n)/a, is parallel to the horizontal axis, and
so that the shorter side which has length W(R) = Vo, A (n) is vertical.

Step 0. Initial condition. }f n =1 then the graph G is just a single vertex. Rectangle R, which has arca
A4(1). must contain a grid square because cach dimension of R is at least two, a fact that is casily verificd.
Thus the theorem is true for the initial condition by simply cmbedding the single vertex in the grid square and
returning this layout as the result of the construction.

Step 1. Partition. Using the f(n)-separator theorem, divide G into two disjoint subgraphs G, and @,
which have agn and (I—a(,,)n vertices respectively, where ag < a; < 1-a;. The number of edges in the cut
set is at most ¢ f(n).

T
N

R ™
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Figure 5: ‘The retationships among rectangles in Step 2.

Step 2. Solve the subproblems. Remembering that rectangle R is oriented with its longer side horizontal,
define R0 1o be a similar rectangle to R that has arca AS((I(IH)'PAY(( l-a(,)n) and sits in the lower left corner of
R. (Sce FFigure 5.) Apply F.emma 2 with
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Alagm) + A((l-u(’.)n) ) A_s.(a(,.u) + /Ily((l—a“.)n)

to divide R0 into two rectangles R1 and R2 whose areas are A la,n) and "'s“]'"(,)”)' ‘Ihe aspect ratios of R1
and R, arc bounded below by o since
o < Ala,m < Ala, n) < 1- Alll-a)n) <1- A((l—a(l.)n) <
A(n) A ((x('.n) +.4((] -a, ) A (a(,.n) +4 ((l-a(’.)n) A(n)
which follows from the definition (5) of A1 (n) and Regularity Condition C2. Now solve the subproblems by
recursively embedding G in R, and G, in R,

l-aS.

Step 3. Marry the subproblems. For cach of the ¢ f(n) edges in the set of removed edges, make at most
two horizontal and two vertical shices through R 1o route the edge between its incident vertices as was shown
in Figure 3. The length of this new layout is L( /\'0)+2<:s_/'( m and its width s W( I\’0)+2 c_s.f(n). It remains to
be shown that this layout actually tits in rectangle R, viz,

L(R) £( Ro) +2 (‘Sf(n), (N
W) > W(l\’o) +2¢.f(n). (8)

tv

v

To prove these incqualities. mathematical induction can be used to give an alternative definition of A ()
to that of Equation (6): A.(n)=4/0 for n=1.and

AS(n) = max  (V ./ls,(an) *’Is (1=-a)n) + ZCS.f(H)/V O )2
asgasl-as ' )
for n> 1. We can now use this definition prove Incquality (7) since
LR) = VA a,

v

\/C".s' (g m+.1 ((1—«0)1m/ak +2¢f(M/ Vo,
L(RO) + 2('Sj'('1).

which follows from the fact that 0,0, < 1. The proof of Incquality (8) makes use of the fact that O < O,

v

whence
VR = Va0
> Vo, (VA la m+ A ((T-am +2¢f(m/Vag)
> WR)+2¢.f (Vo /0,
> ‘W(RO) +2¢, f(m). 'y

We have shown that the Tavout actually fits within the bounds of rectangle R which completes the proof
of Theorem 3. O
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7. Corollaries of the Main Result®

Upper bounds on the areas of VISH ayouts for many graphs can be immediately derived as consequences
Theorem 3 and Table 1. Some of these corolaries are enumerated in Table 2,

‘Table 2: Arcas of graphs.

Class of graphs Arca of fayout
Treest o(n)
Planar graphs O(nlg?n)
Outerplunar graphst 0O(n)
X-trees (n = 25 0(n)
k-dimensional meshes (k > 2)F O(A-2/%)
Graphs of genus & (k > 0) O(K2 nig?n)
Shuffle-exchange (1 = 22k) 0(2/1g n)
Cube-connected-cycles (n = k25)+ 0 Ng2n)

+'Ihese results are optimal to within a constant factor,

The separator theorems of Section 3 produce the first two results of the table. Since the class of tree
graphs has a I-separator theorem, the first line of Table 1 says that any tree or forest of trees has a layout
whose arca is lincar in the number of vertices. Lipton and Tarjan’s Vn -separator theorem for planar graphs
sives, according to Line 2 of Table 1. an O(n1g”n) arca upper bound for the layout of any planar graph of n
vertices.

Outerplanar graphs are triangulations of polygons, perhaps with some edges removed.  The author has
heen able to prove a 1-separator theorem for the class of outerplanar graphs, and thus these graphs have lincar
arca layouts. “The separator theorem for trees is subsumed by this result because every tree is an outerplanar
graph.

‘The X-tree graph [19]. which is shown in Figure 6. is a complete binary tree with brother connections,
One could attempt o lay out this graph by modifying the H-tree Invout. but proving that the class of X-trees
has a g n-separator theorem is casier. Bisect the graph with a vertical line that cuts at most (lg m)+1 edges.

S1he reslis reported n this section on trees and planar graphs have been discovered independentty by TG Valant [24] In fact,
Valiant was able toshow that trees coutd be Lad out i hinear area with no ctossoveis BW Blovd and § D Ullean (6] have also used
snfan technigques toshow that any reputar copression can be recopnized by @ hnear-area aircunt

RO e ey




Fach of the two halves can be bisected similarly, once again cutting at most (lg #)+1 edges, where 1 is now the
number of vertices in the half. Since Ig n = O(n9) for any positive ¢, Line 1 of Table T shows that any X-tree

can be laid out in lincar area.

Figure 6: The X-tree on 31 = 2° - 1 vertices.

A k-dimensional mesh is a graph in which cach vertex is connected to its nearest neighbor in cach of k
dimenstons.  Any class of k-dimensional meshes for some constant & has an casily proved #~'*-separator
. . Y . .
theorem, and thus if k > 3, an n-vertex graph in the class has an O(2"2¥) arca layout by virtue of Line 3 of
Table L.

A graph of genus & is a graph that can be drawn with no crossovers on a sphere that has & handles
attached. It has heen shown [2] that there is a subset of O(AVn') vertices whose removal yields a planar
araph. Applying Lipton and Tarjan's result gives a kv -separator theorem, [ine 2 of Table | provides an
upper bound of O(k% nig? ) for the Tayout arca of an n-veriex graph of genus k.

In [9]. Hoey and this author prove a separator theorem for the shuffle-exchange graph [20] on n = 22k
vertices.  Although the function in this separator theorem does not satisfy the regularity conditions of
Section S, the technigues of this paper do apply, and a O(2/1g n) arca layout can be obtained. Recently,
however, we have been able to improve this result by showing that the O(/1g 1) bound holds for alt shuffie-
exchange graphs on n = 2% vertices. This new result. however, does not the techniques in this paper.

Preparata and Vuillemin provide an O(n?/1g?n) arca VISI layout for their cube-connected-cycles
network [18] on 1 = £2% vertices. ‘The topology of this network, which is depicted in Figure 7, can be derived
from a boolean hypercube of 2% vertices by replacing cach vertex with a cycle of & vertices. This graph has a
n/lg n-separator theorem since removing all edges in one dimension of the original hypercube biscets the
graph, removal of those in another bisects the halves, and so forth for all & dimensions. The arca bound
O(#”/1g? n) that is given by f.ine 3 of Table 1 is the same as the arca of the Layout which is given in [18).

Figure 7: ‘The cube-connected-cycles network on 24 = 32% vertices.
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Uppcr bounds in Table 2 that are optimal to within a constant factor are so designated in the table. The
lincar upper bounds are clearly optimal because every graph requires (n) arca. "The other lower bounds can
be obtained from a result of Thompson [23). ‘The mininwn bisection width of a graph is defined 1o be the
minimum aumber of edgoes that must be cut to divide the graph into a | n/2]-vertex graph and a {n/ J)-vertex
graph. ‘Thompson proves that the arca of a graph has order at Icast the square of the minimum bisection
width of the graph. This lower bound argument is surprisingly similar to an analysis of printed circuit boards
given in [21].

Using another of Thompson's arguments. it can be shown that the shuffle-exchange graph and the cube-
connccted-cycles graph have minimum biscction widths of order at least #/1g n. “This arises from the fuct that
these networks can realize an arbitrary permutation in O(lg #) conmunication steps. Thus if one of these
graphs is partitioned into two halves, it must be possible to swap data items between the halves in O(lg #)
time, Since there arc €(n) data items to be swapped. at Ieast order n/lg n data cross between the halves
during cach time unit, and hence the minimum biscction width of these graphs is Q(n/1gn). The arca of any
VLS layout for these graphs must therefore have order at least 22/1g2 5. Thus the upper bound for the cube-
conncected-cycles graph is optimal, but there is a discrepancy in the bounds for the shuffle-exchange graph.

There is also a discrepancy in the the upper and lower bounds for planar graphs. The methods given
above give only a lincar arca lower bound compared with the O{n1g? 1) upper bound. ‘The author believes it
more likely that the upper bound can be improved because he knows of no planar graph that requires more
than lincar arca, and in addition. planar graphs appear to have considerably more structure than is captured
by the Vi -separator theorem alone.

8. An Efficient Implementation of the Layout Algorithm

If a separator theorem can be proved for a class of graphs, Theorem 3 can be used to give an upper bound
on the arca of a VLSI layout for a graph in the class. If. however, a separator algorithni is given for the class of
graphs, the steps in the proof of Theorem 3 constitute an algorithm that can construct a VI.SI layout for a
graph in the class. In this scction, we provide an cfficient implementation of this algorithm and analyze its
performance.

The layout algorithm uses the separator algorithm as a subroutine, and therefore, has an exccution time
that depends upon the cfticiencies of both this subroutine and the bookkeeping necessary for the production
of a layout. The analysis here reflects this dichotomy. 'The total time required to fay out a graph of n vertices
can be expressed as the sum of (i) the total time devoted to the repeated exceutions of the separator
subroutine on the generated subgraphs plus (i) the tme devoted to the management of the layout
representation. Later in this section, we shall present a fast bookkeeping scheme that is based on the UNION-
FIND algorithm analyzed by Tarjan 22} But first, we analvze the amount of time required by the many
exccutions of the separator subroutine.

The lavout procedure has no dircet control over the efficiency of the separator subroutine,  In fact. it
might be the case that all the graph biscctions have been previously computed so that the subroutine is
decentively fust. For the analysis here, however, we assume that the subroutine is invoked in-line, and that
stn) is the time required by the separator subroutine to bisect a graph of # vertices. We can express the
relationshup of S(n). the 1otal amount of time required for all executions of the subroutine during the taying
out of a graph of nvertices, to s(a) by the recurrence S(n) = 1 forn = 1and
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Sn) = Stamy+ S((1-a)n) + s(n) 9)
for n> 1, where a varics in the range ag<as 1-aq.
Bounds for S(n) can be detcrmined by the same technique used to solve Recurrence (1). Define
R(n)=S(1)forn=1,and
R(n) = max  R(an) + s(n)/n.

assagl-as
for n> 1. The bound
Sy < nR(n),
which holds for the case n = 1, also holds for ail values of s greater than one, as is shown by induction:

- S(n) anR(an) + (1-a)nR ((1-a)n) + s(n)

A

< max  anR{an) + (1-a)nR{(1-a)n) + s(n)
ussasl—as

max  aR(an) + s(n)
ussasl-as

n R(n).

The results cnumerated in Table 3 are derived by evaluating R (n) to provide an upper bound on S(n), and
using a similar function to bound S(#) from below. 1.ct uslook at this table in greater detail.

L
1A A

Table 3: Time devoted to the separator subroutine.

s(n) S(n)
o(n9). g<1 o(n)
O(nlgkn). k>0 o(nlgk*n)
Qn9), g>1% o(s(n)

+The function s(n1)/ n must also satisfy Regularity Condition Cl.

‘The first line is a bit of a red herring. 1t says that if the exccution time of the separator subroutine is
polynomially less than lincar in the number of vertices in the graph. then the contribution to the total running
time is lincar. It should be apparent, however, that this precondition is rarely satisfied in practice. After all, it
takes the subroutine at Ieast incar time just o look at all of its input.

‘The second line of Table 3 is more usual—the subroutine requires approximately lincar time. In this case,
the total time required by all exccutions of the subroutine iy only a logarithmic factor larger than the time
nceded by the initial invocation of the separator subroutine on the graph presented as input to the layout
procedure.  Trec graphs have a lincar-time I-separator algorithm that is not difticult o construct, and thus
according 1w the table, the layout algorithm would spend a total of O(xlg») time exceuting this as a
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subroutine when producing a layout for an n-vertex tree. It is remarkable, but Lipton and Tagjan’s V-
separator algorithm for planar graphs also runs in lincar time, and thus only O(nlg n) ime is needed for all of
its exccutions.

The third line of the table says that if the execution time of the separator subroutine is polynomially
greater than lincar, the time required by the first call. which bisects the #-vertex input graph. dominates the
time for subsequent invocations. “This analysis is based on the supposition that s(n)/n satisfies Regularity
Condition C1. When only monotonicity is assumed, the otal time is O(s(#) 1g n)).

Now that the costs due to the f(n)-scparator algorithm have been determined. we turn our attention to
the bookkeeping required to maintain the layout representation, ‘The implementation proposed here nikes
extensive use of the UNION-FIND algorithin analy zed by Tarjan [22]. 'This algorithm provides two instructions
for the manipulation of disjoint sets.  FIND(x) determines the name of the unique sct containing clement x,
and UNtON(Y.Y./) combines the clements of sets X and ¥ into a new set /. ‘The analysis in {22] shows that
the time reguired to execute # UNION operations intermixed with m > n FIND's 1S O(m a(m.n)) where a(m,n)
i related 1o a functional inverse of Ackermann’s function and grows extremely stowly.” We do not go into a
description of the algorithm here—a good one can be found in [I}—but we shall use the UN1oN and FIND
operations and the results of Tarjan’s analysis.

Figure 8: The representation of a layout.
e

The key to the performance of the tayout procedure is the sparse representation of layouts depicted in
Figure 8. Fach important point of the layout is kept in two sets, an x-sef which represents its x-coordinate in
the lnvout. and a y-sef which represents its y-coordinate. The important peints in the layoutare the vertices in
the graph and the endpoints of the horizontal and vertical edge segments. The UNION-FIND data structure
maintains the relationship between a point and its corresponding x- and y-sets. In Fizure 8, this association is
denoted by the curved arcs. All the x- and y=scts for a lavout are kept in linked Tists. The actual a-coordinate
represented by a given x-set is therefore determined by its distonce from the head of the list. Pointers are

7 .
Larian comments that for all practical putposes, it is fess than or cyual 1o three
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used to maintain relationships between points.  For example, an edge segment is represented by a pointer

between its endpoints.
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Figurc 9: Routing an cdge by slicing.
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There are two important operations that must be performed during the Tayout algorithm—slicing a layout
10 route an cdge and combining two sublayouts into a single Lavout. Routing a new cdge between (two vertices
by slicing can be accomplished casily by the fullowing procedure which is illustrated in Figure 9.




18

1. For cach of the vertices, FIND the x-set and the y-set to which 1t belongs.

2. Adjacent 1o these x- and y-sets in the linked lists, insert new - and y-scts. eftectively adding
new shices of lavout. Because pointers represent the horizontal and vertical components of
previously routed edges. the components are not severed and reconnected as was described
in Scction 2. Insteud. they “stretch™ automatically.

3. Add the new points for the cdge to be routed o the appropriate x- and y-sets, and route the
edge using puinters to represent the edge components. Fach new point belongs  the x- and
1=sets of the previous two steps.

Because we are considering only those classes of graphs which hase bounded vertex degree, the number
of edges to be routed during the entire course of execution of the layout procedure is linear in i, the number
of vertices in the input graph.  The routing algorithm above is cafled once for cach edge, and hence total
number of invocations is lincar in 4, During cach invocation, a constant number of FIND'S are exccuted. and
the rest of the work tikes only constant time. Thus the overall cost is the tme to execute a lincar number of
FIND's plus another term which is lincar.  Since cach FIND requires more than constant time, the linear
number of FIND's dominates.

The cost of the FIND's cannot be determined without also knowing the number of UNION's that must be
performed. The fayout algorithm uses the UNION operation in the following procedure which combines two
Lavouts into one. (Without loss of generality, assume the layouts arc side-by-side in x.)

I. Append one linked list of x-sets to the other. ‘This will produce a list of x-sets for the

combined Tuyout such that all of the x-coordinates of one sublayout lic to one side of all the
x-coordinates of the other.

2. Traverse both linked lists of y-sets, and UNION corresponding y-sets to produce the linked
Tist of y=sets for the the resultant Tayout. That is, the kth y-set of final layout is obtained from
the UNtox of the Ath y-sets of the sublayouts.

The number of UNION's varies cach time two layouts are combined because it is dependent upon the
leneths of the hnked lists that are merged.  If 0, is the aspect ratio of R, the rectangle that contains the
combined lavout, then the length of the linked list is \/W since R is alwayvs bisected parallel to the
shart side. Ths leads to the following recurrence which describes the total number of UNION's exccuted by
the layout algorithin: (ny=0for n =1, and

Uy = Ulan) + U{(1-a)n) + Vo, ,4_5,(11)

for n > 1. where a varies in the range a; < @ < l-a; and o, varics in the range 6, < 6, < l-0,. 'This
recurrence equation is similar to Recurrence (9) which describes time devoted to the exccution of the
separator subroutine.  In fact, the same asvmptotic results enumcerated in Table 3 arc valid when \/_’T.s(—") is
substituted for s(n). Notice in particular that if Ag(n) = O(n¥) for some ¢ < 2, then U(n) = ()(n).

We now have arelationship between the arca of the layout A (1) and the number of UNION'S U(n). But
A () was determined. after all, by f(n). the width of the separator. (Do not confuse f(n) with s(n), the time
required to execute the separator subroutine.) Carrying this relationship through, the number of UNION's
U/(n) can be exprossed in terms of £(n), and then, using the fact that there are only a lincar number of FIND's,
the total time required by the management of the layout representation can be determined.  ‘Table 4
enumerates these results, where 7(ny is the time required by the bookkeeping to lay out a graph of n vertices.

The first line of the table can be derived by observing that if £(m) = O(n9) for ¢ < 1 and is monotonic if
Sy = V0, then Aty = Qn ) and. as was noticed carlier. £1(n) = O(n). Because the wtal number of
Finps s also hnear i, the otal tme reguired for bookkeeping is O(n a(nn)).

dhihanhies
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Table 4: Time devoted o the management of the layout representation,

f(n) I'(n)
o(nY), g< 1% O(na(nny)
o(n) O(nlgn)

TThe function f(n) must also be monotonic if f(n) = Sl(n“z).

The second line of the table gives the worst-case running time for the bookkeeping which occurs when
there is no better than an a-separator theorem. In this case the arca given by the fayout procedure is O(n?),
and the time to combine layouts is O(nlg n). Other bounds are readily derived for cases when the growth of
f(n) lies between 09 for g< 1 and o For example, if f(n) = n/lg n. then the time for bookkeeping is
O(nlglgn). Thus even if the separator algorithm is only marginally good. the bookkecping time is nearly
linear.

9. Layouts with Collinear Vertices?

The results of previous scctions can be applied to models in which different constraints are placed on the
layouts. In this section, we consider layouts in which vertices are required (o lie on a straight line. The results
for this model can be casily generalized to other models such as that in which all vertices are constrained to lie
on the (convex) perimeter of the layout. In this section. the techniques used in previous sections are employed
to provide arca bounds for graphs based on separator theorems for the graphs.  In addition, some lower
bound results are presented on the optimality of these constructions for trees and planar graphs.

Figure 10 shows how an f(n)-separator theorem can be used to construct a Jayout with collinear vertices.
First, the graph is bisected by cutting at most ¢ f(s2) edges. Then layouts are recursively constructed for the
subgraphs and arc placed side-by-side along the baseline. Vertical slices are made through the layouts, and
edges are routed in the space above.

‘The analysis of this construction is much casier than that of Section 6. Since at most two vertical slices are
made for cach edge, the length of the layout along the bascline is O(n). ‘The height H(n) of the layout is a
constant for n =1, and

H(n) = max  Han) + ¢ f(n)

assag_l-as
forn> 1.
If f(n) is nondecreasing. then H{n) = O(f(mg n) and the total arca A (n) is therefore O(f(n)nign). In

particular. it f(n) = O(ig*n). then A (n) = O(ulgh*tn). 1f F(n) is Q(n9) for some ¢> 0 and f(n) satisfics
Regularity Condition C1, then H(n) = O(f(m) and Ag(n) = O(n £(m)).

¥ hetne upper bounds on the areas of tees and planar graphs represent jomnt work with Jon 1. Bentley
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Figure 10: The construction of a layout with collincar vertices.

‘This means that planar graphs can be embedded on a line in O(nV'ir) arca and trees in O(nlg n) arca.
We now show that these embeddings for trees and planar graphs are optimal to within a constant factor. A
similar result on trees was independently discovered by Brent and Kung [5}in which they show that in any
layout of a complete binary tree, the arca devoted to wire must have order at least nlg n. The approach here
differs in that we show that the convex region containing the layout must have Q(nlg n) arca.

Lemma 4: For any complete-binary-tree layout of n = 2421 collinear vertices where & > 0,
there cxists a perpendicular to the bascline that lics between the leftmost and rightmost
vertices and cuts at feast [A/72] edges and vertices.

Proof. (Induction.) ‘The lemma is casily satistied for the initial cases of n=1and n=3. For the gencral
casc. consider the four subtrees of size 242=1. (Sec Figure 11.) Call the Teaf that is lefunost on the bascline v,
and let w be the rightmost leaf that is in a different subtrec from v, Choose one of the two subtrees that
contain neither v nor w. The inductive hypothesis gives us a perpendicular that cuts [(k-2)/2] edges or
vertices in the subtree. Since vand ware in different halfplancs as determined by the perpendicular, the path
between them must be cut by the perpendicular. But this path is disjoint from the subtree, which means that
one more edge or vertex is cut for a total of [£/2]. O

|
v w

Figure 11; ‘The construction in L.cmma 4.

This lemma can be used to show that the minimum arca of any convex region containing a layout for a
complete binary tree must be Q(nlg #). The length of the fayout along the baseline must be Q(#), and as
demonstrated by the previous construction, there is a point in the favout Qg n) away from the baseline. This
point and the two points on the limits of the bascline determine a triangle which has Q(nlan) arca. Since any
convex region that contains these three points must contain the triangle, so must any convex regivn containing
the layout have Q(nly 1) arca.




21

Similarly, the O(nVn') upper bound on the arca for the lavout of an n-vertex planar graph is tight o
within a constant factor because a square mesh requires Q(nvV1r ) arca. This can be shown by considering that
the minimum bisection width of an a-vertex square mesh is V. ‘Thus the perpendicular o the bascline
which divides the vertices on the baseline into |#/2] and [#/2] vertices must cut Vi edges. ‘The rest of the
proof follows that for the complete binary tree,

‘The lower bound results here generalize immediately to the model in which all vertices are constrained to
lic on the perimeter of a convex region. The perimeter of the region must have length Q(#) since there are »
vertices on it. The diameter of the region (the line segment which realizes the greatest distance between two
points) must also be Q(#) since it is no less than a factor of @ times the length of the perimeter. Applying the
previous constructions o the layout, and using the diameter of the region as a baseline yields the same lower
bound results as before, In the case of the mesh, an exact biscction by a perpendicular may not be possible
because some vertices may lic on the perpendicular itself. This situation can be avoided (see [23]) by putting a
unit jog in the perpendicular so that it Tooks like a lowercase aitch without a leftleg. The “perpendicular” can
then be adjusted vertically to bisect the graph.  For the VISI model used in carlier scctions, a similar
construction shows that minimum dimension of any layout of a complete binary tree must be Q(lg #).

10. Perspective

Most wire-routing programs for printed circuit boards have two phases. First, the chips are placed on the
printed circuit board. Then leaving the chips fixed. wires are routed onc by one using heuristic search—
usually a variant on the path-finding algorithm attributed 1o Lee {12]. Most hurdware designers concede that
the first of these two steps is harder. With a good placement. routing is casy: with a bad placement, routing is
impossible.

Most routers for integrated circuits use much the same approach. Variations include polveells {15) and
gate arrays, I the polyeell approach, the components are laid down in horizontal strips and the channels
hetween the strips are used for routing the wires. ‘The advantage is that the channel width is not fixed. If a
channel has too much congestion, extra tracks can be added casily in a manner reminiscent of slicing. The
channels run both horizontally and vertically in gate arrays (also called master slices). but are a fixed width
determined in advance.  Typically, all cells are identical and arc connected up with a final layer of
metalization.

Recently, Johannsen [10] has introduced bristle blocks as a technique for layving out integrated circuits.
Rather than using standard wire routing to connect cells in a design, the cells plug together. ‘This would seem
to mean that atl cells must have the same width or pirch. Instead. however, the cells are designed with places to
streteh so that a cell with smaller pitch can be adjusted o plug into a wider cell with no routing necessary.

The idea of using divide-and-conquer to help with the general wire-routing problem is not new, As far
back as 1969, Ginther [8] gave a heuristic procedure for arranging machines in a workshop given the
frequency of travel between machines. This algorithm, which applies as much to circuit placement as to
machine placement, partitions the transportation graph and places the subgraphs in subrectangles of the
original arca. Gianther’s technique for partitioning is highly heuristic. and he commeents that it is the critical
step. Another heuristic for graph partitioning is given by Kernighan and Lin V1. Among the applications
they menton is that of partitioming chips among printed circuit boards so as to minimize the connections
hetween boards. There is an algorithmic solution to the partitioning problem. however. Itis based on the fuct
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that the graphs of interconnections which arise in practice are almost planar. By replacing cach crossover in
some drawing of the graph with an artificial vertex that performs the crossover, Lipton and Tarjan’s separator
algorithim for planar graphs can be appliced.

It is unlikely that a fast general partitioning algorithm will be found because the problem of finding the
minimum biscction width of a graph is NP-complete [7]. In other words, graphs are hard to partition. “This
unfortunate situation brings up the question, “Can the divide-and-conquer approach used in this paper, which
performs placement and routing simultaneously compete with or enhance those techniques already in use?”

A difficulty with applying the techniques of this paper concerns constant factors in the arcas of layouts.
The model in Section 2 assumes that cach vertex fits into a square of the grid, and furthermore, that the sizes
of vertices and edges are comparable. For many practical applications, the vertices are somewhat larger than
the cdges. 'This means that the grid size is substantially larger than the cdge widith, and thus cach slice
through the layout wastes a large constant factor. A solution to this problem is to design the cells represented
by vertices with places where they can be sliced, and then use the largest unsliceable portion of a cell as the
granularity of the grid. This technique complements the bristle blocks approach because places where a cell
can stretch are frequently places where it can be sliced.

There is another solution, however, which does not require the cells to be sliccable, and yet does allow the
granularity of the grid to be the width of a wire. 'The limitation is that sizes and shapes of vertices must not
vary widely. Fach vertex is placed in a rectangle whosce arca is four times the arca of the vertex. The layout
algorithm is allowed to slice this rectangle, but slicing is allowed only in one direction, in the other direction
the space between or next to the layouts is used as a channel for routing. When a shice is made through a
vertex, the vertex is not sticed. but instead the edge simply crosses over. When the algorithm terminates, cach
cdge that crosses over a vertex is ronted around the vertex in the unused arca provided by the rectangle. ‘The
author is currently working on another approach based on weighted separator theorems where at cach stage of
the recursion, all edges that are 1o be routed at a higher level are brought to the periphery of the current
layout.

Where vertices are large. unsliccable, and of widely varying sizes. the problem becomes one of two-
dimensional bin-packing with constraints. This formulation scems the least tractable. It may be, however,
that as with bin-packing, simple heuristics can be found that give reasonable solutions for commonly occuring
instanccs.
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